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What does it Really Take to be 
an Independent Data Layer?
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What is Independent Data Layer (IDL)?

• IDLs abstract heterogeneous data sources for the end users. Applications can offload the integration 
effort. Apps can be independent to the data sources.

• Gives owners control over who can access what subset of their data (e.g., integrators)

• An IDL makes data available to any application via a standard, open interface.



Common Misconception about IDLs

•IDLs are expensive

•IDLs are slow to deploy

•IDLs are redundant

•IDLs add complexity

•IDLs are not my concern, but somebody else’s.



IDLs Should Be

•Independent from both equipment and solution vendors

• Anybody can benefit from an IDL

•Agnostic to data sources

• Make deployment fast, scalable, inexpensive

•Using standard ontologies

• Remove redundancy, reduce complexity by abstractions



Who benefits from an IDL?

CHALLENGES 
AND NEEDS

DATA CONSUMERS

• Large portfolios
• ESG
• Gov’t compliance
• Operations
• Monitoring
• Maintenance
• Facil ities management
• Asset disposition
• Cost allocation
• Indoor air quality
• Space planning

Market Examples:

1st Party
BUILDING OWNERS & 
CORPORATE TENANTS

• Huge customer bases
• Margin optimization
• Insurance: Liability, 

equipment, crime, fire, …
• Energy service companies
• Facilities, operations, and 

maintenance
• Property & investment 

management

Market Examples:

2nd Party
SERVICE PROVIDERS, 

CONTRACTORS, OPERATORS

• Replace slow human-based 
onboarding with one-click 
deployments

• Normalized access 
to systems across all 
deployments

• Vendor agnostic data
• Focus on innovation rather 

than integration
• Recommend vendors 

for missing sensors

Market Examples:

3rd Party
PROPTECH SOLUTIONS & SOFTWARE 

VENDORS



ACCESS
Solutions & Apps

{
  building(id:"175A7C19") {
    floors(index: "3") {
      spaces {
        id
        name
        geoshape
      }
    }
  }
} 

MAP
Data normalized to BRICK

CONNECT
Discover & Extract

Web 

APIs

Dataflow in an IDL
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Mapping and Normalization at Scale

AI Engine
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A Unified Interface through GraphQL + BRICK



Mapped GraphQL

•A standard API model 
for structured data

•A client can define
exactly what they need

•Standard types, relations, 
and properties 
by an ontology

{

  buildings (id: <building_id>) {

    things (type: AHU) {

      feeds (type: VAV) {

        id

        points (type: Supply_Air_Flow_Sensor){

           id

           name

           series (startTime: 2023-06-01,

                   endTime: 2023-06-06) {

             timestamp

             value

}}}}}}



What are Ontologies?

• A common way to represent concepts of interest

• What concepts? Types, annotations, relationships, properties

• Haystack started with tagging. BRICK started with type systems.

Why are there different ontologies?

• Different design principles

• Different eco system

• Different life cycles

They all want the same: 

interoperability



Relationships between Ontologies
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Haystack API over Mapped in BRICK

1. Haystack Read filter

temp and sensor and 

equipRef=@VAV1

2. Parsed Query 

Haystack Client Mapped-Haystack

Tags: temp, sensor

Ref: equip:@vav1

4. GraphQL Construction

things (id: vav1) {

  points (type: {in: [“Temp_Sensor”, “Air_Temp_Sensor”,…]

    ...

}

3. Haystack-BRICK Lookup

Haystack 
tags

Haystack 
proto

BRICK
class

… … …

6. GraphQL -> Grid

5. GraphQL Execution

7. Grid Response

id,dis,curVal

...,...,...

Opensource: https://github.com/mapped/mapped-haystack

https://github.com/mapped/mapped-haystack


Mapped Sandbox

• Need realistic sample data to test our platform.

• Converted a reference building in EnergyPlus into BRICK

• ASHRAE901_OutPatientHealthCare_STD2019

• Run the actual simulator in real time to feed the data

• https://developer.mapped.com/docs/sandbox

Intellicare Infirmary
Outpatient Clinic
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An IDL should be

- Independent from both equipment and solution vendors

- Agnostic to any particular data sources

- Supporting standard ontologies
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