
Dr. Jason Koh, Chief Data Scientist, Mapped
jason@mapped.com

What does it Really Take to be
an Independent Data Layer?

Millions of
data points

Cooling tower
Solar

Ventilation

Chiller

Elevator

Access controlGuest management

Fire alarm

Lighting
Video conferencing

Air quality

Lobby

Roof

Riser

Seismic detection

Trash compactor

Shade control

Parking

Wi-Fi location tracking

Weather station

Leak detection

Parking access control

RetailWater treatment

Sump pumps

Lobby directory

Beacons

People counting

Occupancy sensing

Bathroom

Hot desk

Digital signage

BAS/BMS

Server room

Stairwell

Surveillance

Security alarm

Irrigation

Gas flow

Energy meter

Office

Conference room

Water meter

Calendar

Directory

Entrance

Phone

One Independent Data Layer

What is Independent Data Layer (IDL)?

• IDLs abstract heterogeneous data sources for the end users. Applications can offload the integration
effort. Apps can be independent to the data sources.

• Gives owners control over who can access what subset of their data (e.g., integrators)

• An IDL makes data available to any application via a standard, open interface.

Common Misconception about IDLs

•IDLs are expensive

•IDLs are slow to deploy

•IDLs are redundant

•IDLs add complexity

•IDLs are not my concern, but somebody else’s.

IDLs Should Be

•Independent from both equipment and solution vendors

• Anybody can benefit from an IDL

•Agnostic to data sources

• Make deployment fast, scalable, inexpensive

•Using standard ontologies

• Remove redundancy, reduce complexity by abstractions

Who benefits from an IDL?

CHALLENGES
AND NEEDS

DATA CONSUMERS

• Large portfolios
• ESG
• Gov’t compliance
• Operations
• Monitoring
• Maintenance
• Facil ities management
• Asset disposition
• Cost allocation
• Indoor air quality
• Space planning

Market Examples:

1st Party
BUILDING OWNERS &
CORPORATE TENANTS

• Huge customer bases
• Margin optimization
• Insurance: Liability,

equipment, crime, fire, …
• Energy service companies
• Facilities, operations, and

maintenance
• Property & investment

management

Market Examples:

2nd Party
SERVICE PROVIDERS,

CONTRACTORS, OPERATORS

• Replace slow human-based
onboarding with one-click
deployments

• Normalized access
to systems across all
deployments

• Vendor agnostic data
• Focus on innovation rather

than integration
• Recommend vendors

for missing sensors

Market Examples:

3rd Party
PROPTECH SOLUTIONS & SOFTWARE

VENDORS

ACCESS
Solutions & Apps

{
 building(id:"175A7C19") {
 floors(index: "3") {
 spaces {
 id
 name
 geoshape
 }
 }
 }
}

MAP
Data normalized to BRICK

CONNECT
Discover & Extract

Web

APIs

Dataflow in an IDL

Data Source Connection

Merge

W
e

b
 A

P
Is

Poll &

Subscribe

Mapping

Library

Poll &

CoV

P
ro

to
c

o
ls

Subgraphs

from each Source

ACCESS
Solutions & Apps

{
 building(id:"175A7C19") {
 floors(index: "3") {
 spaces {
 id
 name
 geoshape
 }
 }
 }
}

MAP
Data normalized to BRICK

CONNECT
Discover & Extract

Web

API

Mapping and Normalization at Scale

AI Engine

ACCESS
Solutions & Apps

{
 building(id:"175A7C19") {
 floors(index: "3") {
 spaces {
 id
 name
 geoshape
 }
 }
 }
}

MAP
Data normalized to BRICK

CONNECT
Discover & Extract

Web

API

A Unified Interface through GraphQL + BRICK

Mapped GraphQL

•A standard API model
for structured data

•A client can define
exactly what they need

•Standard types, relations,
and properties
by an ontology

{

 buildings (id: <building_id>) {

 things (type: AHU) {

 feeds (type: VAV) {

 id

 points (type: Supply_Air_Flow_Sensor){

 id

 name

 series (startTime: 2023-06-01,

 endTime: 2023-06-06) {

 timestamp

 value

}}}}}}

What are Ontologies?

• A common way to represent concepts of interest

• What concepts? Types, annotations, relationships, properties

• Haystack started with tagging. BRICK started with type systems.

Why are there different ontologies?

• Different design principles

• Different eco system

• Different life cycles

They all want the same:

interoperability

Relationships between Ontologies

zone

zone air temp

sensor point

air temp

sensor pointT
a
g
s

P
ro

to

Zone_Air_

Temperature_

Sensor

equal

HVAC_Zone

Room

isPointOf
hasPart

Haystack API over Mapped in BRICK

1. Haystack Read filter

temp and sensor and

equipRef=@VAV1

2. Parsed Query

Haystack Client Mapped-Haystack

Tags: temp, sensor

Ref: equip:@vav1

4. GraphQL Construction

things (id: vav1) {

 points (type: {in: [“Temp_Sensor”, “Air_Temp_Sensor”,…]

 ...

}

3. Haystack-BRICK Lookup

Haystack
tags

Haystack
proto

BRICK
class

… … …

6. GraphQL -> Grid

5. GraphQL Execution

7. Grid Response

id,dis,curVal

...,...,...

Opensource: https://github.com/mapped/mapped-haystack

https://github.com/mapped/mapped-haystack

Mapped Sandbox

• Need realistic sample data to test our platform.

• Converted a reference building in EnergyPlus into BRICK

• ASHRAE901_OutPatientHealthCare_STD2019

• Run the actual simulator in real time to feed the data

• https://developer.mapped.com/docs/sandbox

Intellicare Infirmary
Outpatient Clinic

ACCESS
Solutions & Apps

{
 building(id:"175A7C19") {
 floors(index: "3") {

 spaces {
 id
 name
 geoshape
 }

 }
 }
}

MAP
Data normalized to BRICK

CONNECT
Discover & Extract

Web

API

An IDL should be

- Independent from both equipment and solution vendors

- Agnostic to any particular data sources

- Supporting standard ontologies

References

• https://blog.mapped.com/demystifying-the-search-for-a-perfect-ontology-through-mapping-and-evolution-
51571501115e

• Cloud function by Ahmad Roaayala from https://thenounproject.com/browse/icons/term/cloud-function

	Slide 1: What does it Really Take to be an Independent Data Layer?
	Slide 2: Millions of data points
	Slide 3: What is Independent Data Layer (IDL)?
	Slide 4: Common Misconception about IDLs
	Slide 5: IDLs Should Be
	Slide 6: Who benefits from an IDL?
	Slide 7: Dataflow in an IDL
	Slide 8: Data Source Connection
	Slide 9: Mapping and Normalization at Scale
	Slide 10: A Unified Interface through GraphQL + BRICK
	Slide 11: Mapped GraphQL
	Slide 12: What are Ontologies?
	Slide 13: Relationships between Ontologies
	Slide 14: Haystack API over Mapped in BRICK
	Slide 15: Mapped Sandbox
	Slide 16
	Slide 17: References

