
Haystack 4 Tag Dictionary in Niagara

Haystack in Practice – The End-User Perspective & Real-World Applications

Stephen Holicky | Product Director | Tridium

Eric Anderson | Software Engineer | Tridium

1

2

Since we last met
in San Diego…

2

3

3

HAYSTACK IN YOUR WORKFLOW

4

Tag Based Graphics HTML5 Tag Manager

4

HAYSTACK IN YOUR WORKFLOW

5

Tag Based Logic Builder Haystack 4 Support

5

6

THANK YOU

HAYSTACK 4 SUPPORT
Haystack 4 enriched the taxonomy and an ontology to
capture machine-readable relationships of things
along with their contextual data

HAYSTACK TAG DICTIONARY
Aligns Niagara Tagging with the latest Haystack technologies.

Updatable in-place and without a module update from Tridium.

EASY MIGRATION
Haystack 4 items equivalent to
the Haystack 3 versions are
added during migration action.

6

DEEP DIVE

7

Haystack 4 Tag Dictionary in Niagara

Haystack in Practice – The End-User Perspective & Real-World Applications

7

PRIOR ART

• Haystack Connect 2022 Schedule
– Niagara Haystack 4 Tag Dictionary on Vimeo

• Connections Magazine - Sep 2022

• TridiumTalk: Niagara 4.13 Feature Preview -
Haystack 4

8

Information about Haystack 4 support in Niagara is already in a few places. There is a
link to the video of my presentation at last year’s Haystack Connect available at
haystackconnect.org. There was an article in the September 2022 Connections
magazine. And, this past April, I did a TridiumTalk on Haystack 4- you can find a link
to that on the events page at tridium.com.

8

DEEP DIVE

• Haystack 3 in Niagara recap

• Haystack 4 in Niagara summary

• Migrating from 3 to 4

• Demo

9

Today, I’ll do a quick recap of how Haystack 3 was supported in Niagara and then
summarize the support for Haystack 4. Then, I’ll talk about support for creating
Haystack 4 tags, tag groups, and relations based on your existing Haystack 3 items.
Finally, I’ll show a quick demo of these things.

9

HAYSTACK 3 IN NIAGARA

• Significant post-processing
– tags.csv + extra columns

– Equip point lists → equip.csv

• Complex updating and customization
– Tags and equip import files

10

Support for Haystack 3 was a little cumbersome. Updated Project Haystack definition
files had to be processed before they could be used by Niagara. Extra columns had to
be added to the tags.csv and all the equip point lists had to be combined into an
equip.csv. To update or change items in the dictionary, users had to create tag and/or
equip import files. It was all very complex.

10

HAYSTACK 4 IN NIAGARA

• Based mostly on unaltered defs and protos.json
– 4.13 contains 3.9.14

– Can update dictionary in-place with newer versions

• Supplemented by config file
– Tagging convenience features

– Can update dictionary with custom version

11

For Haystack 4, we tried to do as much as possible with the unaltered definition files.
We’ll be shipping the latest with each Niagara release but if new versions come out
between releases, the dictionary should be able to consume them. There is an extra
but minimal configuration file that provides support for some tagging convenience
features. This file can also be customized by users and fed to a deployed dictionary.

11

TAGS

• All defs outside lib:ph that can be mapped to a
Niagara type

12

Haystack 4 Niagara

marker BMarker

bool BBoolean

number BDouble

int BInteger

str, coord, scalar, uri BString

date, dateTime, time BAbsTime

The tags in the dictionary are imported from Project Haystack’s defs.json. Most, if
not all, defs outside of the lib:ph library are imported if they can be mapped to a
Niagara tag value type.

12

lib:ph TAGS

• The entity and geoPlace defs
• Subtypes of entity
• Defs that are a tagOn entity or geoPlace or one of their

subtypes
– geoCity is tagOn geoPlace
– kind, tz, unit, etc. are tagOn point, a subtype of entity

• Defs listed in the Niagara configuration file: min, max,
input, and output

13

From the lib:ph library, we import the entity and geoPlace defs explicitly. Then, we
import any defs that are a “tagOn” those defs or their subtypes. For example, the
geoCity def is imported because it’s a tag on the geoPlace def. Likewise, defs such as
kind, time zone, and unit are imported because they are tags on the point def, which
is a subtype of the entity def. Finally, we import a few additional tags specified in that
Niagara configuration file.

13

CHOICE TAGS

• DynamicEnum tag for each choice def

• EnumRange based on choice values
– Subtypes of the choice def's "of" def

– Or, subtypes of the choice def

• Tag rule implies a marker tag or tag group based on
the enum value

14

In Haystack 4, there are choice defs that define an exclusive relationship between a
set of marker tags or tag groups. In Niagara, we model these as DynamicEnum tags
with an EnumRange based on the choice values in the defs.json. There are two ways
choice values are determined in Haystack 4. First, the subtypes of the choice def’s
“of” def. Second, the subtypes of the choice def itself. When one of these choice
values is selected on the DynamicEnum tag, a tag rule implies the corresponding
marker tag.

14

TAG GROUPS

• Conjuncts from defs.json

• Protos from protos.json
– Exclude those that are already a tag or conjunct tag

group: equip, point, space, humidifier-equip, networking-
device, etc.

15

Tag groups in the Haystack 4 dictionary come from the conjuncts in defs.json and the
protos in protos.json. Protos that are already a tag or conjunct tag group are not
added again.

15

RELATIONS

• String value tag added for each ref def subtype

• Relation added for each subtype except the ID def

• Use of Niagara relations preferred

• Exported as tags by nhaystack

16

For every def that is a subtype of the ref def, we have added a String value tag. The
value of these tags could be manually set to the ID of the parent or substance source
entity. Instead of that, however, we recommend using Niagara relations. For every
subtype except for ID, we have added a relation to the dictionary. When using the
nhaystack module, these relations are exported as tags with their value set to the ID
of the relation’s endpoint.

16

SMART RELATIONS

• equipRef implied on descendant proxy points of a
component tagged with "equip"

• equip tag no longer implied on all BDevices

• spaceRef implied on sub-equips and equip points

• siteRef implied on sub-spaces, sub-equips, and
equip points

• systemRef implied on sub-equips

17

As with the Haystack 3 dictionary, we’ve included some smart relations to assist with
relating points to equips to spaces to sites. Note that the equip tag is not implied on
BDevices in the Haystack 4 dictionary as it was in the Haystack 3 dictionary. We’ve
more recently added the systemRef smart relation- if a parent equip has a systemRef
relation to a component with the system tag, a systemRef relation will be implied
from any sub-equips to that system component.

17

SITE-EQUIP-POINT

18

Equip

Site

Point

Point

h4:siteRef direct

h4:siteRef implied

h4:equipRef implied

In this example, a component with the equip tag has a siteRef relation to a site
component.

18

SITE-EQUIP-POINT

19

Equip

Site

Point

Point

h4:siteRef direct

h4:siteRef implied

h4:equipRef implied

EquipRef relations are implied from the descendant proxy points to that equip
component.

19

SITE-EQUIP-POINT

20

Equip

Site

Point

Point

h4:siteRef direct

h4:siteRef implied

h4:equipRef implied

Additionally, a siteRef relation is implied from the equip points to that equip’s site
component.

20

SITE-SPACE-SPACE-EQUIP-EQUIP-POINT

21

Space

Site

Equip

Equip

Space

Point

Point

h4:siteRef direct

h4:siteRef implied

h4:spaceRef direct

h4:spaceRef implied

h4:equipRef direct

h4:equipRef implied

In this example, a sub-equip has an equipRef relation to a parent equip, the parent
equip has a spaceRef relation to a space, that space has a spaceRef relation to a
parent space, and the parent space has a siteRef relation to a site.

21

SITE-SPACE-SPACE-EQUIP-EQUIP-POINT

22

Space

Site

Equip

Equip

Space

Point

Point

h4:siteRef direct

h4:siteRef implied

h4:spaceRef direct

h4:spaceRef implied

h4:equipRef direct

h4:equipRef implied

As before, the equip points get an implied equipRef relation to the sub-equip.

22

SITE-SPACE-SPACE-EQUIP-EQUIP-POINT

23

Space

Site

Equip

Equip

Space

Point

Point

h4:siteRef direct

h4:siteRef implied

h4:spaceRef direct

h4:spaceRef implied

h4:equipRef direct

h4:equipRef implied

The sub-equip and its equip points get an implied spaceRef relation to the parent
equip’s space.

23

SITE-SPACE-SPACE-EQUIP-EQUIP-POINT

24

Space

Site

Equip

Equip

Space

Point

Point

h4:siteRef direct

h4:siteRef implied

h4:spaceRef direct

h4:spaceRef implied

h4:equipRef direct

h4:equipRef implied

And, the equip points, equips, and spaces get an implied siteRef relation to the parent
space’s site.

24

CUSTOM TAG RULES

• SiteRef, SpaceRef, EquipRef smart relations

• Imply simple tags
– point on BControlPoints

– bacnet on BBacnetNetworks

• Imply smart tags
– unit value copied from units facet

– id value: nspace:{stationName}~slot:{slotPath}

25

The smart relations just described are implied using custom tag rules specified in the
extra Niagara configuration file. There are also custom tag rules that imply simple
tags, such as the point tag on BControlPoints and the bacnet tag on
BBacnetNetworks. There are custom tag rules that imply smart tags, such as the unit
tag whose value comes from the units facet and the id tag. In the Haystack 4
dictionary, the generated ID value is a combination of the station name and slot path.

25

CHOICE TAG RULES

• "of" def subtypes

• Choice def subtypes

26

Another set of tag rules implies the choice value marker tags.

26

INHERITANCE TAG RULES

• Based on the def type inheritance tree

• For example, water → liquid → fluid → substance
→ phenomenon

27

The final set of tag rules are based on the def type inheritance tree in Haystack 4 and
generated based on defs.json. For example, water is a liquid is a fluid is a substance is
a phenomenon. When the water tag is applied to a component, either directly or
implied, the liquid, fluid, substance, and phenomenon tags are also implied.

27

MIGRATING HAYSTACK 3

• Action to add Haystack 4 equivalents for direct
tags, tag groups, and relations

• Haystack 3 items not removed

• Not yet migrating tag-based bindings or tag rules

• Mostly copying tag name and value

28

To support the transition from Haystack 3, the Haystack 4 dictionary includes an
action that adds Haystack 4 equivalents for direct Haystack 3 tags, tag groups, and
relations. The Haystack 3 items will stay in-place. We are not yet adding Haystack 4
equivalents to tag rules or modifying the NEQL queries in tag-based PX bindings.
Mostly, the Haystack 3 tag names and values are simply copied.

28

MIGRATION EXCEPTIONS

• project-haystack.org/doc/docHaystack/Changes3to4

• Encoded in haystack3MigrationConfig.csv

• Alternate configuration file may be specified

29

However, as documented on this Project Haystack page, there are some changes
between 3 and 4. These exceptions are captured in a migration configuration file.
Users can create and use their own migration file if necessary.

29

MIGRATING TAGS AND RELATIONS

• Renaming: ahuRef → airRef
• Tag to multiple tags: dew → air, dewPoint
• Tag to tag group: co2 → co2-concentration
• Query based: apparent →

– if temp or weatherPoint: air, feelsLike
– else: apparent

• Removed: connection, device1Ref, device2Ref,
reheating

30

For tags and relations, the exceptions are handled in different ways. Some are only
renames, such as ahuRef to airRef. Some tags in Haystack 3 became multiple tags in
Haystack 4 such as the dew tag for which air and dewPoint are added. Other tags
became tag groups in Haystack 4, such as co2 to the conjunct co2-concentration. In a
few cases, a query is required to pick the Haystack 4 equivalents. For example,
“apparent” in Haystack 3 if paired with “temp” or “weatherPoint” becomes “air” and
“feelsLike” in Haystack 4. Finally, some tags and relations have been removed from
Haystack 4 and no equivalent is added.

30

MIGRATING TAG GROUPS

• Use Haystack 4 tag group with additional point tag
– discharge-air-temp-sensor →

discharge-air-temp-sensor-point

• Explicit mapping in migration configuration file
– energy-net-sensor →

total-net-ac-elec-active-energy-sensor-point

31

For tag groups, there were no identical equivalents. For most Haystack 3 tag groups,
the closest matching tag group in Haystack 4 only differs by the point tag. In that
case, that closest matching tag group is added. For example, the Haystack 4
discharge-air-temp-sensor-point tag group is added for the discharge-air-temp-sensor
Haystack 3 tag group. For other tag groups, there is an explicit mapping in the
migration configuration file. For example, the Haystack 4 total-net-ac-elec-active-
energy-sensor-point tag group is added for the energy-net-sensor Haystack 3 tag
group.

31

DEMO

32

Haystack 4 Tag Dictionary in Niagara

Haystack in Practice – The End-User Perspective & Real-World Applications

32

Q&A

33

Haystack 4 Tag Dictionary in Niagara

Haystack in Practice – The End-User Perspective & Real-World Applications

33

