Optimized Controls

Adaptive Model-based Predictive Control and Machine Learning

Draguna Vrabie

Chief Scientist, Optimization and Control Pacific Northwest National Laboratory

mart Data. Smart Devices. Smart Buildings. Smart Business.

Modern buildings: connected energy hubs

Human Centric, Reliable, Sustainable, Secure

- *Uncertainty*, Diversity,
- Actuation, Sensing,
- Cyber-Physical system
- Many stakeholders
- Bi-directional flow of power
- Energy hub

Buildings operate under uncertainty

- Controls are tuned for the worst day
- Seasonal and daily variations of loads driven by weather
- Weekly and daily variations of loads driven by occupancy
- Equipment aging and degradation

Daily mean outdoor air temperature, Chicago 2016

Adaptive Control

- Optimize supervisory control decisions
- Adapt operation to uncertainty

May 13-15, 2019

Testing environments

May 13-15, 2019

Machine Learning Models

- Learn equipment performance from data
- Online learning algorithms minimize deployment cost

Machine Learning Models

Map chiller delivered cooling capacity to power consumption

Machine Learning Models

- Learn models that predict zone temperatures with high accuracy
- Trade simplicity vs accuracy

May 13-15, 2019

Optimization: Model-based Predictive Control

Performance evaluation

Comfort: distribution of temperature in the zones

Energy Reduction w.r.t. best in class sequences

May 13-15, 2019

Thermal Comfort Performance

Smart Data. Smart Devices. Smart Buildings. Smart Business.

Performance evaluation

August 6 (Monday) – August 11 (Saturday)

MPC = 1.83 MWh Baseline1 = 1.98 MWh Savings (%) = 7.5%

2019

Average Computation Time

Connect

Smart Data, Smart Devices, Smart Buildings, Smart Business

Weekly Energy Savings for Different Seasons

Chiller energy consumption

Fan energy consumption

Average weekly energy consumption (Chiller + Fan)

Season	# Weeks	Guideline 36	MPC	% Savings
Summer	10	1.47 MWh	1.35 MWh	8.71 %
Winter	8	0.54 MWh	0.52 MWh	3.89 %

Prediction benefit

Energy performance and computation requirements w.r.t. prediction horizon

Contact details

Draguna Vrabie

Chief Scientist, Optimization and Control Energy and Environment draguna.vrabie@pnnl.gov

Piljae Im

Senior Staff, Building Envelope & Urban Systems Building Technologies and Research Integration imp@ornl.gov

Thank you

May 13-15, 2019

OpenBuildingControl

Michael Wetter Lawrence Berkeley National Laboratory

Smart Data. Smart Devices. Smart Buildings. Smart Businessq

Programming errors are the leading cause of controls-related problems

Control-related problems (Ardehali, Smith 2002).

Energy: More than 1 quad/yr of energy is wasted in the US because control sequences are poorly specified and implemented in commercial buildings.

Process: The process to specify, implement and verify controls sequences is expensive and produces low quality implementation.

Performance: Efficiency, occupant- and grid-responsiveness are the most difficult part to quantify and realize.

Risk: ROI of energy savings may not be achieved. Exposure to risk due to malfunctioning system integration.

Vision

What if

1. Mechanical designer

1. selects best-in-class control sequences from ASHRAE-vetted guidelines from a sequence selection tool,

- 2. configures them for their project,
- 3. exports them digitally for bidding and implementation, together with verification tests.

2. Control provider automatically

- 1. bids on the project using this electronic specification
- 2. implements these sequences in their building automation systems through code translation, and
- 3. gets automatically the Haystack and/or BRICK information from the sequences.
- 3. **Installer** automatically connects hardware, sequences, FDD methods and energy information systems, using Haystack/BRICK.
- 4. **Commissioning agent** verifies formally that the sequences are implemented as specified, using the Haystack/BRICK information to connect them to a digital twin of the control systems.

Controls

Sense

Connect

Communicate

Compute actuation signal

Actuate

What is missing?

Why now?

Convergence of

- semantic web
- declarative modeling language for building system & control
- collection of best-in-class control sequences
- capability to simulate actual feedback control coupled to energy models
- code generation for machine-to-machine translation
- need for grid-interactive efficient buildings

OpenBuildingControl: Realize energy savings of advanced controls using a formal, highly-automated process

BACnet standardizes communication OpenBuildingControl standardizes language for sequences

How?

Take the subset of Modelica that is needed for block-diagrams.

Benefits

- Energy performance, e.g., ASHRAE Guideline 36
- Quality: Error-free implementation by construction
- Productivity: Highly automated, elimination of programming errors
- Accountability:
 - Formal process that connects design to operation
 - Formal verification of design intent

Open standard for a language to model dynamic systems. modelica.org

7% of German power production is optimized based on Modelica

Reference Intraday optimization of municipal power

Source: http://new.abb.com/power-generation/power-plant-optimization

What is the Control Description Language?

A declarative language for expressing block-diagrams for controls.

A graphical language for rendering these diagrams.

A library with elementary input/output blocks that should be supported by CDLcompliant control providers.

A syntax for documenting the control blocks and diagrams.

CDL Continuous Conversions Discrete DayType FirstOrderHold Sampler TriggeredMax UnitDelay

Output the absolute value of the input

Information

Block that outputs y = abs(u), where u is an input.

Connectors

Туре	Name	Description
input RealInput	u	Connector of Real input signal
output RealOutput	у	Connector of Real output signa

A model of computation that describes the interaction among the blocks.

How do you test and evaluate the performance of these sequences?

Spawn of EnergyPlus

Allows

- testing of correctness of actual control sequences in simulation coupled to energy model
- assess their energy and demand flexibility

Will

- export control sequences in CDL
- integrate with control delivery process
- export Haystack and BRICK

Why should you care about building energy modeling?

Two similar ASHRAE-published VAV sequences yield 30% different HVAC energy use.

Energy modeling

- identifies and helps closing this 30% performance gap,
- yields better control sequences, and
- ensures that savings are realized

Michael Wetter, et al. <u>OpenBuildingControl: Modeling feedback control as a step</u> towards formal design, specification, deployment and verification of building control sequences. *SimBuild* 2018. **2019**

https://obc.lbl.gov/specification/codeGeneration.html https://github.com/lbl-srg/modelica-json

Haystack Connect

Control verification: Digital twin verifies correct operation

Heating (negative) and cooling (positive) control loop signal

mwetter@lbl.gov

