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Modern buildings: connected energy hubs

Human Centric, Reliable, Sustainable, Secure

Uncertainty, Diversity,

e Actuation, Sensing,

e Cyber-Physical system
 Many stakeholders

e Bi-directional flow of power
 Energy hub
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Buildings operate under uncertainty

e Controls are tuned for Daily mean outdoor air temperature, Chicago 2016
the worst day

e Seasonal and daily W AT
variations of loads driven ~ * ! | v
by weather <

« Weekly and daily £

variations of loads driven
by occupancy
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quipment aging and
. Date
d e g ra d a t I O n M Outdoor p = Mean Qutdoor Temperature = Mininimum Qutdoor Temperature ===Thermostat deadband setting
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Adaptive Control

., Self-optimizing
opﬁmize efficiency

e Optimize

Machine-learning %
automated online leaming
supervisory

e control decisions

e Adapt operation
to uncertainty

Data sets

\\‘ A equipment degradation and physical faults
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Building
Emulation
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ORNL Test
Building

Testing environments
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Machine Learning Models

e Learn equipment
performance from data

e Online learning algorithms
minimize deployment cost

May 13-15, 2019
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Machine Learning Models

Map chiller delivered cooling capacity to power consumption

Outside temp < 20C
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Chiller power

400000

375000

350000

325000

300000

275000

250000

225000

200000
150

2019 ﬂ |Haystack Connect

20C <= Outside temp <= 30C

+ Training data
- Fitted model
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Chiller power
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Machine Learning Models

'Room104 2Hour Prediction Performance (with Decision Tree)

== = - True measurement

 Learn models that predict 15

Min - Max band

zone temperatures with high
accuracy

* Trade simplicity vs accuracy

0 1000 2000 3000 4000 5000 6000
Time (in minutes)
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Optimization: Model-based Predictive Control

past , future
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Performance evaluation
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Thermal Comfort Performance
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Daily energy consumption

Ene-agy (Mink)
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Performance evaluation

November 12 (Monday) — 17 (Friday)

April 31 (Monday) — May 5 (Saturday)
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All data in seconds
Week Avg. Min Max
Nov 310 0.18 1865
Apr 291 011 11.32
Aug 6.97 019 3147
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Weekly Energy Savings for Different Seasons

Chilller energy consumption Fan energy consumplion
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Average weekly energy consumption {Chiller + Fan)

Season # Weeks Guideline 36 MPC % Savings
Summer 10 1.47 MWh 1.35 MWh 8.71 %
Winter 8 0.54 MWh 0.52 MWh 3.89 %
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Prediction benefit
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Moving to High Performance Data Driven Buildings

OpenBuildingControl

Michael Wetter
Lawrence Berkeley National Laboratory
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Programming errors are the leading cause of controls-related

problems
Energy: More than 1 quad/yr of energy is wasted in the US

Not-specifed _ I 12 because control sequences are poorly specified and
5 Operatorndiference. |00 implemented in commercial buildings.
8 Operator interference 7777771 10.4
g -
E Operator unawareness . . '
E p Operator error  E2Z774 6.8 Process: The procelss to Spelcrfy’ Implement and Verlfy ’
Deta managemens. |03 controls sequences is expensive and produces low quality
g Operation system § 1.0 i m p | e m e ntat i O n .
E Programming 31.3
kpuions nplaion Performance: Efficiency, occupant- and grid-responsiveness
% C““ﬁ::*"f’" are the most difficult part to quantify and realize.
—-:’: Controller
3 S i — Risk: ROI of energy savings may not be achieved.

Exposure to risk due to malfunctioning system integration.

Control-related problems
(Ardehali, Smith 2002).
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Vision
What if
1. Mechanical designer
1. selects best-in-class control sequences from ASHRAE-vetted guidelines from a sequence selection tool,
2. configures them for their project,
3. exports them digitally for bidding and implementation, together with verification tests.
2. Control provider automatically
1. bids on the project using this electronic specification
2.implements these sequences in their building automation systems through code translation, and
3. gets automatically the Haystack and/or BRICK information from the sequences.

3. Installer automatically connects hardware, sequences, FDD methods and energy information systems, using
Haystack/BRICK.

4. Commissioning agent verifies formally that the sequences are implemented as specified, using the Haystack/BRICK
information to connect them to a digital twin of the control systems.
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Controls

Sense
Connect
Communicate
Compute actuation signal

Actuate
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What is missing? Why now?

Convergence of

e semantic web

¢ declarative modeling language for building
system & control

e collection of best-in-class control sequences

e capability to simulate actual feedback control
coupled to energy models

e code generation for machine-to-machine
translation

¢ need for grid-interactive efficient buildings

2019 rpfﬁ Haystack Connect
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OpenBuildingControl: Realize energy savings of advanced
controls using a formal, highly-automated process

Library of control Designer Control provider Commissioning agent failed
sequences === = y
in OpenStudio

;:/.' etBol.
‘B import §
sequence,

untested

J/L . passed

submit and deliver 7
configure export —— controls through 9T
ASHRAE : and test o t/on- = codegeneration - . verify against
\—/ export * —_——r  n design specification
GUIdellne 36 verification tests Bl |
Share Design Implement Verify against original design

best practice
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BACnet standardizes communication
OpenBuildingControl standardizes language for sequences

VLY

MODELICA
How? Open standard for a language to model
dynamic systems. modelica.org

Take the subset of Modelica that is needed for block-diagrams.

Benefits

¢ Energy performance, e.g., ASHRAE Guideline 36 Reference

Intraday optimization of municipal power

e Quality: Error-free implementation by construction

S - e Aim: balance production and load

¢ Productivity: Highly automated, elimination of programming errors e L, Explolsiorage capaciies, 0, heat

buffers, pump stores, electrical mobility

¢ Accountability:
e Formal process that connects design to operation

e Formal verification of design intent
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What is the Control Description Language”?

>

A declarative language for expressing block-diagrams for controls. >Ny
|
A graphical language for rendering these diagrams. -
|
~[cpL
. , , ] B conti
A I|brary with elementgry input/output blocks that should be supported by CDL O ngv'g;‘s‘i’gjs
compliant control providers. ':_}Dgac;g;epe
%4 FirstOrderHold
&4 Sampler
Lt TriggeredMax

{5+ TriggeredSampler
1} UnitDelav

Output the absolute value of the input
Information

A syntax for documenting the control blocks and diagrams. Block hatcuputs y = abs(), where s an nus

Connectors

Type Name Description
input Reallnput Connector of Real input signal
output RealOutput y Connector of Real output signal

A model of computation that describes the interaction among the blocks. NG D™*

‘Paused| | Active

.~ pausaApp J T
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How do you test and evaluate the performance of these

sequences”?
Spawn of EnergyPlus

o - Users build, run, and analyze models
225 OpenStudio SDK Linkages.js editor wthrough OpenStudio, Linkages.js,
ug or other interfaces A”OWS
I Vodeliason D e testing of correctness of actual
control sequences in simulation
B e cooms [l owonis TRl & s, - CoUpled o energy mode
= ‘ odelica Buildings i rovider ' .
3 | [ T OGRS W5se;scan add * assess their energy and demand
S and Load Models & Controls ' : N flexi bl|lty
g Models A s
g _______ 0 .
- e Automated translation Will
n S\ (01 l .
— Modelica FMU {0\ o vencorplatioams e export control sequences in CDL
¢ ¢ integrate with control delivery process
PyFMI Co-simulator / QSS Solver

e export Haystack and BRICK
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Why should you care about building energy modeling?

30

Two similar ASHRAE-published VAV sequences yield =
30% different HVAC energy use. = latent
= cooling
Energy modeling 2
0} fan
* identifies and helps closing this 30% performance é p—
gap, =15 cooling
, % sensible
e vields better control sequences, and ks cooling
e ensures that savings are realized £70 sensible
O cooling
S
L 5]
heating
Michael Wetter, et al. heating
OpenBuildingControl: Modeling feedback control as a step 0- base case Guideline 36
towards formal design, specification, deployment and (ASHRAE 2006) (ASHRAE 2016)
;;:22;21;{110;10(;21:')u11d1n2 Ll 2019 Hﬂﬁ HaystaCk connect See http://obc.Ibl.gov/specification/example.htm
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http://obc.lbl.gov/specification/example.html
http://simulationresearch.lbl.gov/wetter/download/2018-simBuild-OpenBuildingControl.pdf
http://simulationresearch.lbl.gov/wetter/download/2018-simBuild-OpenBuildingControl.pdf
http://simulationresearch.lbl.gov/wetter/download/2018-simBuild-OpenBuildingControl.pdf

From design to operation

https://obc.lbl. gov/spemﬁcahon/codeGenera‘uon html

https://github.com/Ibl-srg/modelica-json

rrh Haystack Connect
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Elementary Energy Digital twin
control blocks modeling :
ChL i Spawn e T Modelica
A o v
Reposito Control ~ p* Control Control
of sep uencrgs sequence sequence sequence
e.g qASHRAE’ prllly | fOr PrOJECT  [relly|  fOr PrOjECt |melPp| fOr project
5% CDL JSON BAS



http://obc.lbl.gov/specification/codeGeneration.html#use-of-control-sequences-or-verification-tests-in-realtime-applications
https://github.com/lbl-srg/modelica-json

Control verification: Digital twin verifies correct operation

setpoint control
signal

A2

disturbances

controller  f-------mmememeeeeea

+
>
>

+

measurement

signal

Y

n verification
'
'
L,-,-,-,-,}) —n ~">| input file
> d
> > | reader

sequence
chart

L

control
specification

time series
verification
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Generate Brick from Spawn (2019-22)

1 \:‘I?e

MmopELilcA ‘ o lﬂ
- 7 b | ‘ .
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A

Digital twin in
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|
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mwetter@lbl.gov
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