Automating Campus Dashboards Using Haystack

Stephen M. Frank, PhD
National Renewable Energy Laboratory
Learning Objectives

1. Understand how Haystack enables dashboard automation
2. See some practical examples of Haystack-enabled dashboards
3. Review challenges and solutions for dashboard automation
NREL Intelligent Campus Team

Suzy Belmont
Information Systems Coordinator

Dylan Cutler
Optimization Engineer

Stephen Frank
Instrumentation & Controls Engineer

William Gillies
UX/Brand Designer

David Goldwasser
Building Energy Modeler

Tau Kung
Building Energy Research Engineer

Sakshi Mishra
Machine Learning Specialist

Lissa Myers
Analyst

Anya Petersen
Software Architect

Jacob Reynolds
Controls Technician

Michelle Slovensky
Program Manager

Bethany Sparn
Systems Engineer

Alex Swindler
Software Engineer

Kiley Taylor
Metering Infrastructure Engineer

May 13-15, 2019
Circa 2003
Facility Floor Area: 323,776 ft²
Occupants: ~450

Circa 2018
Facility Floor Area: 967,390 ft² (+198%)
Occupants: ~2100 (+367%)
NREL’s Energy Management & Information System

23 Facilities

- Complete: 5
- In Progress: 2
- Meters Only: 13
- No Data: 5

22,842 Data Streams

- Electricity Meters
- Building Automation Systems
- Onsite Generation
- Electric Vehicle Service Equipment
- Weather Measurements, Forecasts
NREL’s Dashboard Goals

Provide information to campus occupants
Provide visibility to facility operators
Provide insight for business decision makers
Most dashboards still use manually-configured communication links
Our design philosophy:
Automate dashboard generation using Haystack
Goal: Dynamic Everything!

Benefits:
- Portability
- Scalability
- Minimal Maintenance

Dynamic Navigation

Dynamic Layout

Dynamic Data
Q. How does it work?
A. Tie modular UI elements to Haystack queries
{site, dis:"Cafe", ...}

Autogenerated Navigation:
http://intelligentcampus.nrel.gov/#/building/cafe/
Same data, excluding siteMeter, but different view
Café
Primary Function: Food Service
Year Built: 2012
Area: 12140 ft²

{site, dis:"Cafe", area:12140ft², ...}
1. Query: `elec` and `meter` and `siteRef==@cafe`

2. For meters, query: `active` and `total` and `power` and `point`

3. Read History
1. Query: point and weatherPoint and weatherRef==@cafe->weatherRef and (temp or ghi or cloudage or ...)

2. Read: curVal on each point
Number and placement of gauges from query result (using pre-defined layouts)
Expectation models built automatically from historical meter data
Prediction Points

Real Power Total
- navName: “Real Power Total”
- id: @p:nrel:r:4
- point: ✓
- sensor: ✓
- active: ✓
- power: ✓
- total: ✓
- unit: “kW”
- equipRef: @p:nrel:r:3 “Main Meter”
- spaceRef: @p:nrel:r:2 “Meters”
- siteRef: @p:nrel:r:1 “Cafe”

Real Power Prediction
- navName: “Real Power Prediction”
- id: @p:nrel:r:5
- point: ✓
- prediction: ✓
- predictionOf: @p:nrel:r:4
- predictionAlgorithm: “ANN”
- predictionConfig: { ... }
- equipRef: @p:nrel:r:3 “Main Meter”

Real Power Upper Bound
- navName: “Real Power Upper Bound”
- id: @p:nrel:r:6
- point: ✓
- prediction: ✓
- predictionOf: @p:nrel:r:4
- predictionAlgorithm: “ANN”
- predictionConfig: { ... }
- ub: ✓ // Upper Bound
- equipRef: @p:nrel:r:3 “Main Meter”

Real Power Lower Bound
- navName: “Real Power Lower Bound”
- id: @p:nrel:r:7
- point: ✓
- prediction: ✓
- predictionOf: @p:nrel:r:4
- predictionAlgorithm: “ANN”
- predictionConfig: { ... }
- lb: ✓ // Lower Bound
- equipRef: @p:nrel:r:3 “Main Meter”

May 13-15, 2019
Challenges and Solutions
Challenge: Integrating Spatial Data

- Haystack has limited native support for geospatial or 2D/3D asset information
- *(Partial) solution:* cross-reference to an external graphical asset store
- **Drawback:** still requires updates in two places
Challenge: API Limitations

• **Client must initiate communication:**
 Many clients ⇒ many API calls

• **hisRead op is one point only:**
 Many points ⇒ many API calls

• **Limited/unclear support for COV subscription:**
 Polling required to get updates (even with watchSub?)
Challenge: Manage Caching

Rapid Refresh Low Overhead
(One Possible) Solution: Middleware

Database ➔ Haystack ➔ Middleware ➔ WebSockets ➔ Clients
Roles of the Middleware

1. Manages rescan/refresh
2. Caches asset lists, metadata, navigation
3. Centralizes updates \(\Rightarrow\) reduces API traffic
4. Pushes new data to clients
Challenge: Filtering / Visibility Control

Sometimes, you don’t want everything to show up...

• During setup/commissioning
• Important sites only
• Sensitive facilities

(One Possible) Solution: Filter with dashboard tag
Live Demo

Time and Technology Permitting...