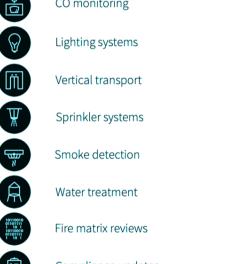

Haystack in Practice – Application in the Real World


A review of different data-driven operational opportunities

Richard Harrison – Chief Technology Officer

HVAC performance

Bin sensors

JIT dispatching

Dynamic route mgt

lpWAN

Compactors and balers

GIT monitoring

Reporting integrations

Vibration analysis

Parking systems

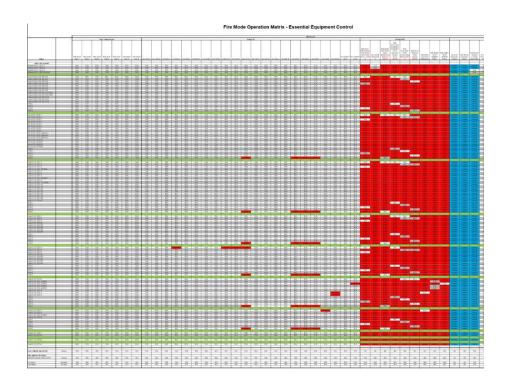
Business intelligence

People counting

A Review of Different Data-driven opportunities

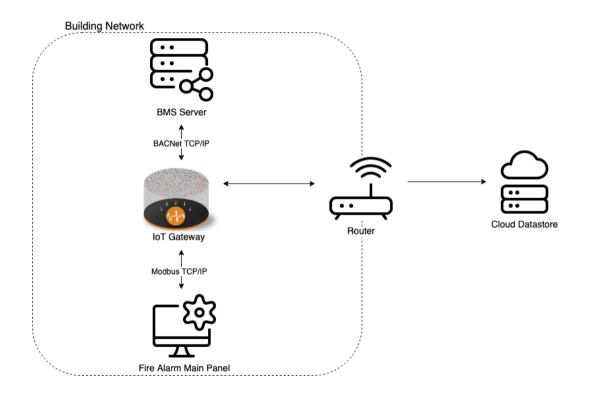
Fire Systems, Vertical Transport and Vibration Analysis

- Operational objectives
- Integration Methods
- Tagging & Analytics
- Example Outputs



Fire Systems

The issue


Opportunities

- Enhance fire and life safety compliance
- Maintenance and testing regime transparency
- Detailed system Alarm, Isolation and Fault trend analysis
- Detailed reporting outside of onsite logbook management process

Example Architecture

Data Points

- Alarms
- Pre-Alarms
- Isolations
- Faults
- IO devices
- Testing status

Tagging Elements

- Loop
- Zone
- Matrix components

Example 1 - Daily Reporting

Example 2 - Fire Matrix Assessment

Fire Panel Report 2019-05-09

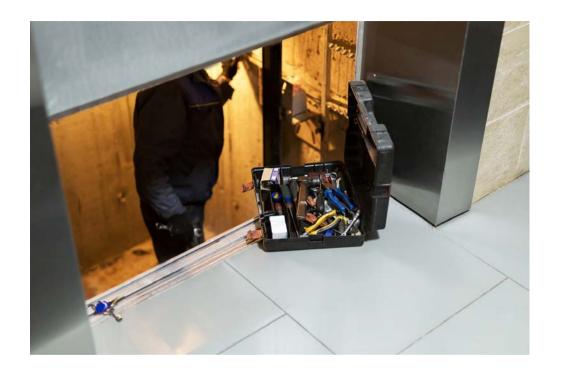
Isolation per loop 2019-05-09

Loop Nr	Sensors Isolated	% Sensors Isolated
1	15	12.7 %
2	16	14 %
3	3	2.8 %
4	2	2.3 %
6	2	1.9 %
7	1	1.2 %
8	2	4.9 %
10	43	40.6 %
15	1	1 %
18	14	16.7 %
19	2	3.3 %
20	1	1.1 %
21	3	4.1 %
22	1	1.4 %
24	3	2.6 %

Fire Matrix Report 2018-05-14

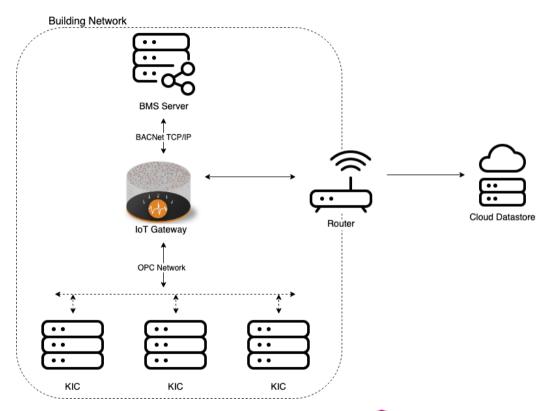
Fire Matrix Failed

Sensor	Equipmen	Start	Resul		Duratio	Inspect
	t	Start	t	d	n	
24-83-25-L-5 BLOSSUM PLACE WAGNER-XP95 APID	AHU5-5	14/May/18 3:37PM	FAILED	RUN	17 min	inspect data
24-83-25-L-5 BLOSSUM PLACE WAGNER-XP95 APID	AHU5-10	14/May/18 3:35PM	FAILED	RUN	1 min	inspect data
24-83-25-L-5 BLOSSUM PLACE WAGNER-XP95 APID	AHU5-11	14/May/18 3:35PM	FAILED	RUN	1 min	inspect data
24-83-25-L-5 BLOSSUM PLACE WAGNER-XP95 APID	KEF-5-05	14/May/18 3:35PM	FAILED	STOP	2 min	inspect data
24-83-25-L-5 BLOSSUM PLACE WAGNER-XP95 APID	RAFMyer5- 01	14/May/18 3:35PM	FAILED	STOP	1 min	inspect data
24-83-25-L-5 BLOSSUM PLACE WAGNER-XP95 APID	RAFMyer5- 02	14/May/18 3:35PM	FAILED	STOP	18 min	inspect data
24-83-25-L-5 BLOSSUM PLACE WAGNER-XP95 APID	SPF-5-01	14/May/18 3:35PM	FAILED	RUN	18 min	inspect data
24-83-25-L-5 BLOSSUM PLACE WAGNER-XP95 APID	SPF-5-02	14/May/18 3:35PM	FAILED	RUN	18 min	inspect data
24-83-25-L-5 BLOSSUM PLACE WAGNER-XP95 APID	SPF-5-03	14/May/18 3:35PM	FAILED	RUN	18 min	inspect data
24-83-25-L-5 BLOSSUM PLACE WAGNER-XP95 APID	SPF-5-04	14/May/18 3:35PM	FAILED	RUN	18 min	inspect data
24-83-25-L-5 BLOSSUM PLACE WAGNER-XP95 APID	SPF-6-01	14/May/18 3:35PM	FAILED	RUN	18 min	inspect data
24-83-25-L-5 BLOSSUM PLACE WAGNER-XP95 APID	SPF-6-02	14/May/18 3:35PM	FAILED	RUN	18 min	inspect data



Vertical Transport

The issue


Opportunities

- Delivering performance transparency
- Improving reliability and availability
- Targeted responses to breakdowns and complaints
- Minimising repetitive breakdowns
- Maximising labour efficiency
- Lifecycle analysis capability
- Combining mixed OEM plant types
- Interface with CMMS and Asset Management platforms

Example Architecture

Data Points

- Alarms
- VT speed and weights
- All button activities
- Drive system detail
- Door operations
- On/Off Status

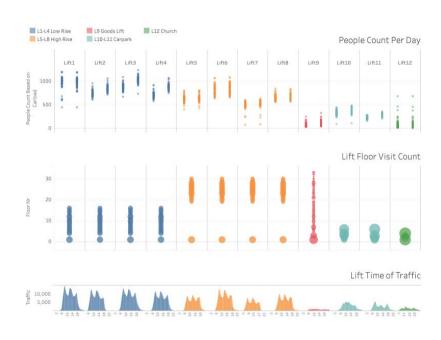
Tagging Elements

- Lift Group Type i.e. High, Medium, Low Rise
- Maximum Safe Working Load
- Lift Type i.e. Hydraulic, Rope

Example 1 - Daily Reporting

Riverside Centre VT DLP Report for Apr-2019

Lift DLP Stats


Operating hours: 7:00-18:00

Lift Bank outages this month: Goods Lift: 2 (0.6h)

Lift Afterhours shutdowns: Lift1 21 (1.3h), Lift2 20 (1.8h), Lift3 21 (3.6h), Lift20(R) 256 (98h)

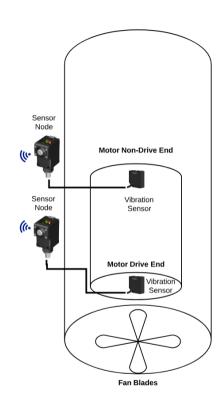
Lift Group	Lift Nam e	Daytime availability %	Probable Entrapments	Alarm Dialer Compliance	Fail ure s	Failur es Dur		Floors Travelle d	Average Waiting Time
CparkLifts123	Lift1	100 %	0		2	0 h	5 424	7 005	
CparkLifts123	Lift2	100 %	0		1	0 h	11 494	13 520	
CparkLifts123	Lift3	100 %	0		1	0 h	18 639	21 617	
<u>Lowrise</u>	Lift4(C)	100 %	0		7	0 h	4 021	22 513	
<u>Lowrise</u>	Lift5(D)	100 %	0		0		11 288	66 007	
<u>Lowrise</u>	Lift6(A)	99.6 %	0	~	7	1.3 h	6 962	40 237	
<u>Lowrise</u>	Lift7(B)	100 %	0	~	0		2 936	15 489	
MidRise	Lift08(F)	98.9 %	0		1	0 h	19 063	215 612	

Example 2 - Traffic Counting

Vibration Analysis

The issue


Opportunities

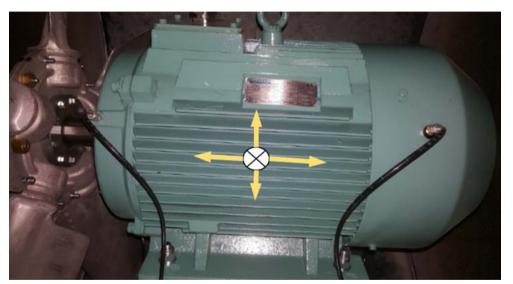

- Maximise & control equipment uptime
- Increase visibility of equipment performance
- Reduce maintenance costs through data driven maintenance
- Interface with CMMS and Asset Management platforms

Example Architecture

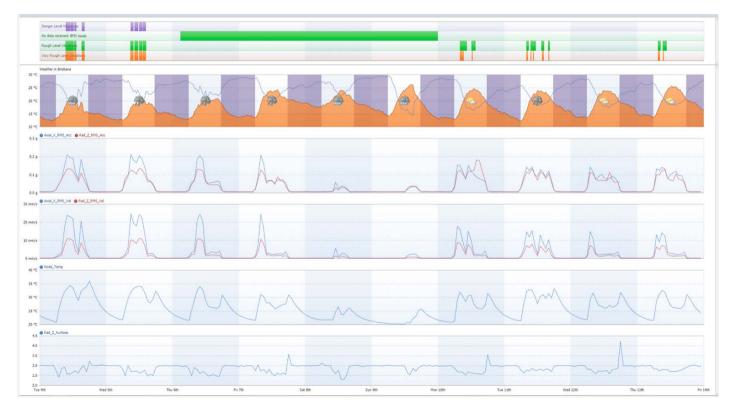
Data Points

- X-Axis Speed | Velocity | Amplitude(g)
- X-Axis Frequency
- Y-Axis Speed | Velocity | Amplitude(g)
- Y-Axis Frequency
- Z-Axis Speed | Velocity | Amplitude(g)
- Z-Axis Frequency

Tagging Elements


- Accelerometer type i.e. piezoelectric, piezoresistive and capacitive MEMS.
- VA measurement type i.e. Impact, RMS, VMS
- Sensor Axis type i.e. 2 axis, 3 axis

Example 1 - Install examples



Example 2 - Issue Example

Summary

- Analytics helps us move maintenance from checklists to data-driven operations
- Having visibility of our data helps us uncover issues we didn't even know existed
- Non-HVAC systems are an area of great opportunity, and there is a lot of low-hanging fruit
- It's an exciting time to work in this space!

